Extensions 1→N→G→Q→1 with N=C32 and Q=C3xD9

Direct product G=NxQ with N=C32 and Q=C3xD9
dρLabelID
D9xC33162D9xC3^3486,220

Semidirect products G=N:Q with N=C32 and Q=C3xD9
extensionφ:Q→Aut NdρLabelID
C32:1(C3xD9) = He3:3D9φ: C3xD9/C9C6 ⊆ Aut C3281C3^2:1(C3xD9)486,142
C32:2(C3xD9) = C3xC32:D9φ: C3xD9/C32S3 ⊆ Aut C3254C3^2:2(C3xD9)486,94
C32:3(C3xD9) = C3xC32:2D9φ: C3xD9/C32S3 ⊆ Aut C3254C3^2:3(C3xD9)486,135
C32:4(C3xD9) = D9xHe3φ: C3xD9/D9C3 ⊆ Aut C32546C3^2:4(C3xD9)486,99
C32:5(C3xD9) = C32xC9:S3φ: C3xD9/C3xC9C2 ⊆ Aut C3254C3^2:5(C3xD9)486,227
C32:6(C3xD9) = C3xC32:4D9φ: C3xD9/C3xC9C2 ⊆ Aut C32162C3^2:6(C3xD9)486,240

Non-split extensions G=N.Q with N=C32 and Q=C3xD9
extensionφ:Q→Aut NdρLabelID
C32.1(C3xD9) = He3:D9φ: C3xD9/C9C6 ⊆ Aut C3281C3^2.1(C3xD9)486,25
C32.2(C3xD9) = He3.D9φ: C3xD9/C9C6 ⊆ Aut C32816+C3^2.2(C3xD9)486,27
C32.3(C3xD9) = He3.2D9φ: C3xD9/C9C6 ⊆ Aut C32816+C3^2.3(C3xD9)486,29
C32.4(C3xD9) = He3.5D9φ: C3xD9/C9C6 ⊆ Aut C32816+C3^2.4(C3xD9)486,163
C32.5(C3xD9) = C33:1D9φ: C3xD9/C32S3 ⊆ Aut C32186C3^2.5(C3xD9)486,19
C32.6(C3xD9) = (C3xC9):D9φ: C3xD9/C32S3 ⊆ Aut C32546C3^2.6(C3xD9)486,21
C32.7(C3xD9) = (C3xC9):3D9φ: C3xD9/C32S3 ⊆ Aut C32546C3^2.7(C3xD9)486,23
C32.8(C3xD9) = C3xC27:C6φ: C3xD9/C32S3 ⊆ Aut C32546C3^2.8(C3xD9)486,113
C32.9(C3xD9) = C92:4S3φ: C3xD9/C32S3 ⊆ Aut C32546C3^2.9(C3xD9)486,140
C32.10(C3xD9) = D9x3- 1+2φ: C3xD9/D9C3 ⊆ Aut C32546C3^2.10(C3xD9)486,101
C32.11(C3xD9) = C9:S3:C9φ: C3xD9/C3xC9C2 ⊆ Aut C3254C3^2.11(C3xD9)486,3
C32.12(C3xD9) = C9xD27φ: C3xD9/C3xC9C2 ⊆ Aut C32542C3^2.12(C3xD9)486,13
C32.13(C3xD9) = C27:3C18φ: C3xD9/C3xC9C2 ⊆ Aut C32546C3^2.13(C3xD9)486,15
C32.14(C3xD9) = C32:D27φ: C3xD9/C3xC9C2 ⊆ Aut C3281C3^2.14(C3xD9)486,17
C32.15(C3xD9) = C32xD27φ: C3xD9/C3xC9C2 ⊆ Aut C32162C3^2.15(C3xD9)486,111
C32.16(C3xD9) = C9xC9:S3φ: C3xD9/C3xC9C2 ⊆ Aut C3254C3^2.16(C3xD9)486,133
C32.17(C3xD9) = C33:D9φ: C3xD9/C3xC9C2 ⊆ Aut C3281C3^2.17(C3xD9)486,137
C32.18(C3xD9) = C3xC27:S3φ: C3xD9/C3xC9C2 ⊆ Aut C32162C3^2.18(C3xD9)486,160
C32.19(C3xD9) = C33.5D9φ: C3xD9/C3xC9C2 ⊆ Aut C3281C3^2.19(C3xD9)486,162
C32.20(C3xD9) = D9xC3xC9central extension (φ=1)54C3^2.20(C3xD9)486,91

׿
x
:
Z
F
o
wr
Q
<